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The equations governing the nonlinear development of a centred three-dimen- 
sional disturbance to plane parallel flow at slightly supercritical Reynolds 
numbers are obtained, In  contrast to the corresponding equation for two- 
dimensional disturbances, two slowly varying functions are needed to describe 
the development: the amplitude function and a function related to the secular 
pressure gradient produced by the disturbance. These two functions satisfy a pair 
of coupled partial differential equations. The equations derived in Hocking, 
Stewartson & Stuart (1972) are shown to be incorrect, Some of the properties of 
the governing equations are discussed briefly. 

1. Introduction 
A theory of the evolution of an infinitesimal centred disturbance in plane 

Poiseuille flow (fully developed steady flow under a constant pressure gradient 
between fixed parallel planes) at  a Reynolds number slightly greater than the 
critical value for stability was recently developed by Stewartson & Stuart (1971). 
In  this paper, subsequently referred to as SS, the disturbances were two-dimen- 
sional and it was established that, when nonlinear effects first become significant, 
the amplitude of the disturbance satisfies a nonlinear Schrodinger equation with 
complex coefficients. The properties of solutions of this equation were examined 
in a series of papers (Hocking et al. 1972(HSS); Hocking & Stewartson 1972 
(HSI), 1971(HS2)) and the theory was extended to include three-dimensional 
disturbances. 

Unfortunately, the three-dimensional theory contains an error and an addi- 
tional term must be added to the generalized Schrodinger equation. This term 
contains a new function, which is related to the amplitude function by Poisson’s 
equation. Thus the evolution of the disturbance becomes much more difficult 
to follow, even numerically, although, since the numerical coefficient multiplying 
the new term is relatively small, it  is likely that any modifications of the original 
conclusions will be only quantitative. This is certainly the case for disturbances 
which are in the form of oblique plane waves, for which the original equation 
may be recovered, except for a change in the values of the complex coefficients 
of its terms. 
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The linear terms in the amplitude equation were correctly obtained in the 
previous work, by noting that they must be of such a form that small amplitude 
solutions satisfy the dispersion relation for linear waves in the basic flow. The 
nonlinear terms in the two-dimensional theory are the same as those which are 
present in the corresponding equation for the development of a modal distur- 
bance, and it was thought that the same would be true in the three-dimensional 
theory. However, there are two slowly varying functions needed to characterize 
the disturbance: the amplitude and a secular pressure term. This pressure was not 
explicitly determined in the two-dimensional theory, since the analysis wa,s 
performed in terms of the stream function and the pressure formally eliminated. 
The contribution of the secular pressure to the nonlinear part of the amplitude 
equation was combined with that arising from other sources. In  the three- 
dimensional theory, however, the dependence of the secular pressure on two 
slowly varying spatial co-ordinates prevents its elimination, and two governing 
equations are required. The importance of this pressure term in nonlinear 
stability theory was foreshadowed by Stuart (1958) and its significance has 
been made explicit in recent studies by Eagles (1971) and by Stuart & DiPrima 
(1974). 

In  this paper we derive the correct form of the equations governing the develop- 
ment of centred three-dimensional disturbances and discuss briefly some of their 
properties. 

2. Three-dimensional nonlinear disturbances 
We broadly follow the notation of SS. Suppose that the two planes are a dis- 

tance 2h apart and let 0 be any convenient point midway between them. Let 
Oxyz be a system of Cartesian co-ordinates in which Oz is perpendicular to the 
planes and Ox is in the direction of the undisturbed stream; further, let hx, 
hy and hz measure distances parallel to the axes, and let U ,  v be the fluid velo- 
city, where U, is the maximum velocity of the undisturbed stream and where v 
has components (u, v, w). The governing equations of motion for an incompressible 
fluid are then 

where R = U, h / v  is the Reynolds number, v is the kinematic viscosity and P is 
the non-dimensional pressure. The corresponding boundary conditions are that 

u = v = w = O  at z =  51. ( 2 . 2 )  

u = 1 - z2, v = w = 0, dP/dx = - 2 / R ,  ( 2 . 3 )  

v . v =  0, av/at+(v.v)v = -VP+R-10%, (2.1) 

I n  the undisturbed motion 

which is the fully developed flow produced by a uniform pressure gradient, and 
we shall assume that, even when the flow is disturbed, ( 2 . 3 )  holds as x2 +y2 -+ co. 
The linear theory of stability proceeds by assuming that u, v, w and P are each 
slightly perturbed from their steady-state values by expressions of the form 
exp (ia (z - ct) + iPy> multiplied by a function of z ,  where a and B are real. Non- 
trivial solutions of the linearized forms of ( 2 . 1 )  which then result are only pos- 



hTonlinear evolution of three-dimensional disturbances 531 

sible if a, p, R and c are related. Although there are an infinite number of values 
of c for any fixed a, /3 and R, we concentrate attention on that value of c = cr +ie, 
which has the maximum imaginary part and is therefore the one most likely 
to lead to instability. For this c, there is a critical value R, of R such that, if 
R < R,, ci < 0 for all a and /3 and if R = Re, ci = 0 at the single point (ac, 0) 
in a, /l space. If R > Re, there is a domain of a, ~3 space where ci 2 0. If c = ccr at 
the critical point R = Re, a = a,, /l = 0, we can expand the complex growth rate 
of the linearized disturbance in the vicinity of the critical point in the form 

- iac = - ia,c,+ ia,(a - a,) -a2(a - - b,P2 + (R - R,) d, + . .., (2.4) 
where 

} (2.5) 
R, = 5772.22, LX, = 1.02055, C, = 0.264, a,,, = - 0.383, 

a2 = 0.187+0-02753, d, = (0*168+0-811i) loF5. 

The value of b, can be found by an application of Squire's (1933) theorem, 
which yields the expression 

The value of R, agrees, to the accuracy quoted, with the value obtained by 
Orszag (1971). 

These numbers have all been recalculated and are in very good agreement 
with the values calculated by Dr R. R. Cousins and used in the previous set of 
papers, with the exception of u,, for which Dr Cousins obtained the value 
0.183 + 0.070i. The value quoted in (2.5) has been calculated by two methods, 
one making use of the formula for u2 given in XS and the other using (2.4) and 
calculations of the values of c near the critical point. Also, a recalculation by Dr 
Cousins (private communication) using the second method gave values of a,,, 
a2 and d, in agreement with ours. 

The nonlinear theory of wave systems, as developed in SS, begins by supposing 
that an infinitesimal disturbance, centred at 0 but otherwise arbitrary, is made 
to the solution (2.3) at a Reynolds number R slightly greater than R,. After a 
long time has elapsed, the disturbance will have evolved so that its Fourier de- 
composition only contains waves in which oc. M a, and /l M 0, and of these only 
some will be growing in amplitude. Thus the linear theory filters out all but a 
small group of waves, which travels downstream with the group velocity -a,, 
and which spreads out from its centre to a distance O(t4). This group is affected 
by nonlinearity and its subsequent evolution can be found using the method of 
multiple scales. 

We define, as in HSS, 

(2.7) I e = (R - R,) dl,, E = exp{ia,(x - c,,t)}, 
7 = Et ,  f; = E*(X + Ul , t ) ,  T/ = E+j, 

and write 

u = u,([, 9, T, Z; .) + Eu,(&-, V , T ,  Z ;  E )  + E-%, + E2u2 + E-26, + . . . , (2.8) 
34-2 



532 A. Davey, L. 31. Hocking and K. Xtewartson 
where a tilde denotes the complex conjugate, with similar expressions for w, w 
and P. We also write 

’ 

uo = 1 - 2 2  

u1 = 

+ EU02( t>  7, 7,  2, + “’u03 + f .  f 9 

“tull(c, 7 ,  r ,  %) f Eu12(c ,  7 ,  r ,  x ,  fc’u13 + * * .  7 

u2 = E ’ U 2 2 ( 6 , 7 , 7 ,  2) + €?zU23 4- . . . , 
u3 = €hasf ..., (2.9) 

and so on, with similar expressions for v, w and P, except that vo and wo do not 
contain the term 1 - 22 a.nd 

(2.10) 

The above expressions are now substituted into the governing equations (2.1) 
and coefficients of &Em (n, m = 0, 1 ,2  .. .) equated to zero. From the coefficient 
of s4E we obtain 

Po = - 2 R - l ~  + constant + dPOl + €Po, + . . . . 

u]] = A(5,7,7)  D$l(z), v11 = 0, wi1 = -iacA$l(z), (2.11) 

where D = alax and $l is the eigenfunction of the Orr-Sommerfeld equation 

2?$l [(i/~cR,)(D2-~~)2+(1-~2-~,)(D2-~~)+2]$1 = 0, (2.12) 

normalized so that $,(O) = 1. The determination of the amplitude function A 
is the main purpose of the present nonlinear st,ability theory. 

From the coefficient of eE we get 

aA 8A 
at ~ 1 2  = -i-D$lO+A2D@1, ~ 1 2  = -- (a~$lo+$l)-i~cAz$l,  (2.13) 

where satisfies 

L?$lo = -a;’[( 1 - Z’ +a,, - 4ia,Bg1) (D2 - 01:) - 2013 1 - 9 - c,,) + 21 @l 

(2.14) 

and A,  is another function of c, 7 and r.  The existence of a solution of (2.14) 
sat,isfying the boundary conditions $lo( k I) = D7Ll0( k 1) = 0 is assured by the 
correct choice of a,,, as in SS (2.2 1). Because of the extension to three-dimensional 
disturbances, there is also a y component of velocity, given by 

- = -Lxc-ld$l 

w12 = (aA/a7)Xl(Z), (2.15) 

where {D2--a~-ia,R,(l -~~-c,,))(ia,~~-D$~) +2ia,R,x$, = 0 (2.16) 

and xl( f 1) = 0; it, is not necessary to compute xl explicitly in order to determine 
L4. 

From the coefficient of E E ~  we get 

uZ2 = A2D$,, v2, = 0, w2, = -2ia,A2$,, (2.17) 

where $,(z) is afunction of z defined in SS (3.10) and SS (3.12) and computed by 
R.eynolds & Potter (1967). 

The coefficient of d E 0  gives 
aP,,/a% = 0,  (2.18) 
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and from the coefficient of eEo we obtain 

Dzum-RcaP01/% = iacR,(A12D{$1D$1- $lDfiI], 
PV,,  - R, aPnl/a7 = o 

and, from the equation of continuity, 

Dwoz = 0. 

auo2/aE + at+,a/a7 + D W , ~  = 0, 

Also, the Coefficient of etEO in the equation of continuity is 

and, on applying the boundary condition w = 0 at z = & 1, we obtain 

woz = 0, y1 (%+%) dz = 0. 

From these equations we find 

where 

and 
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(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

The difference between the two- and three-dimensional theories can now be 
seen. When A and Pol are independent of 7, the pressure gradient aPo,/ac and 
thus the velocity component uoz are proportional to ( A  1 2 ,  but such a simplifica- 
tion is not possible in the three-dimensional theory. The error in the previous 
work was a result of overlooking the spanwise pressure gradient dPol/dq. To 
facilitate comparison between the two- and three-dimensional theories, we 
write 

(2.28) 

so that uO2 = IAI'DF(Z)+ (2.29) 

where 

as defined in SS (3.14). The additional function B satisfies 

PI2. 
a2B a2B -+-=- 
agz a72 a72 

(2.30) 

(2.31) 

and is zero for unskewed two-dimensional disturbances. A numerical cornputa- 
t'ion gave IO1 X(z) dz = - 87.2, (2.32) 

and the same value was also obtained from results kindly supplied by Prof. 
W . C . Reynolds. 
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We can now proceed to the coefficient of etE. The z and z components of the 
niomentum equation and the equation of continuity can be reduced to a single 
equation for w13, by eliminating the pressure and the function x, by means of 
(2.16). The equation can be written as 

( 2 . 3 3 )  

Since the operator 3' has an eigensolution satisfying the appropriate boundary 
conditions at  z = 1) = 0, from ( 2 . 2 )  and the 
equation of continuity), a solution of (2.33) is only possible if the right-hand side 
satisfies a certain integral condition. This can most simply be found by multi- 
plying it by the adjoint function CD o f 9  and integrating from - 1 to 1.  Graphs of 
the real and imaginary parts of CD are given by Reynolds & Potter (1967). Fortu- 
nately, the various integrals required have already been computed or can be 
expressed in terms of d, using SS ( 2 . 2 ) .  We find that 

1 (which are w13 ( 1) = Dw13( 

( 2 . 3 4 )  

where k = 30.8- 173i, ( 2 . 3 5 )  

using Reynolds & Potter's results, and 

( 2 . 3 6 )  

The specification of A and B may now be formally completed with the initial 
and boundary conditions. From HSS ( 2 . 2 2 )  we have, for disturbances which 
are centred a t  0 at t = 0, 

( 5' v2 as 7 + 0 ,  
~ z - e x p  A€& ----) 

7 4a,7 4b27 
( 2 . 3 7 )  

where A is a constant determined by the original amplitude of the disturbance. 
Since the disturbance is assumed to die away sufficient,ly far from its centre, w e  
also have 

IAl, IB(+O as g2+r2+o;). (2.3s) 
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3. Discussion 
The pair of differential equations (2.31) and (2.34) which must be solved in 

order to determine the evolution of a three-dimensional disturbance in the non- 
linear regime have been obtained for plane Poiseuille flow. It is likely that a simi- 
lar pair of equations may be obtained for other marginally unstable shear flows. 
Indeed the evolution of a wave packet on the surface of water is governed by 
such equations, only the coefficients of the various terms being changed (Davey 
& Stewartson 1974), even though there is no basic motion of the water, let alone 
a shear flow. I n  both cases the nonlinear terms in the equations arise in part 
from the secular motion of the fluid, due to the disturbance and described by the 
velocity components uo2 and wo2. Notwithstanding the large value of R, this 
motion is very slow and is in fact an example of Hele-Shaw flow. 

Because of the additional term in (2.34), the three-dimensional studies re- 
ported in HS2 are strictly relevant only to flows for which q = 0,  but they may be 
useful as guides to the behaviour of flows for which ] q1 < J kJ . For plane Poiseuille 
flow, = 0.17. I n  HS2 a theory was presented for point-centred bursts in 
three dimensions. It is not possible to  adjust this theory directly to the more 
complicated equations now seen to be relevant to this situation. For when q = 0, 
I A l 2  takes the form of a function of Lt2 + My2 and r near the burst, where L and 
M are known functions of r. When q $. 0,  we must also determine B and it follows 
from (2.31) that B and IAI2 cannot both be of this form. A possible structure 
for point-centred bursts has been found by Hocking (1974), who also gives the 
results of some numerical calculations, limited to the case when all the coefficients 
in (2.34) are real. 

There is one class of disturbances for which the general equation cen be reduced 
to  the simpler two-dimensional form. Suppose that A can be written as a function 
of x and 7, where 

x = l<+my, Z2+rn2 = 1, (3.1) 

and 1 and m are constants, corresponding to  a disturbance whose amplitude, a t  
a fixed value of r ,  is constant along lines inclined to the flow direction. We refer 
to this type of disturbance as a skewed two-dimensional disturbance. It follows 
immediately from (2.31) that 

and hence (2.34) reduces to 
B = m2/Al2, (3.2) 

The properties of this equation have already been extensively studied in HSl. 
I n  identifying the various types of behaviour of the solution in that paper, the 
equation was written with scaled variables in the form 



536 A .  Davey, L. M .  Hocking and K .  Xtewartson 

Thus the diagram showing the regions in the &,ai plane appropriate to different 
types of behaviour (HS1, figure 1) can be used in connexion with the complex 
conjugate of (3.3) if we put 

The position of the Poiseuille line in that diagram must now be changed. It 
identifies the behaviour of two-dimensional skewed disturbances in plane Poise- 
uille flow, but the correction to the equation and the adjusted value of agi change 
its position to a hyperbolic curve between the points (5.63, - 0.147) and (4.87, 
- 17.3). The transition point between solutions which burst and those which 
remain finite for all 7 is now given by m = 0.842, so that all two-dimensional 
disturbances skewed at  angles greater than 57.3" or 1-00 rad to the direction 
of the undisturbed flow end by bursting according to the present theory. The 
previous value was 56". 

We are grateful to Prof. J. T. Stuart for his helpful comments concerning the 
importa'nce of the secular pressure term. 

R E F E R E N C E S  

DAVEY, A. & STEWARTSON, K. 1974 Proc. Roy. Xoc. A To appear. 
EAGLES, P. M. 1971 J .  Fluid Mech. 49, 529-55.0. 
HOCKING, L. M. 1974 Submit.ted for publication. 
HOCKING, L. M. & STEWARTSON, K. 1971 Mathernatilea, 18, 219-239. 
HOCKING, L. M. & STEWARTSON, K. 1972 Proc. Roy. SOC. A326, 289-313. 
HOCKING, L. M., STEWARTSON, K. & STUART, J. T. 1972 J .  Fluid Mech. 51, 705-735. 
ORSZAG, S. A. 1971 J .  FEzcid Mech. 50, 689-703. 
REYNOLDS, W. C. & POTTER, M. C. 1967 J .  Fluid Mech. 27, 465-492. 
SQUIRE, H. B. 1933 Proc. Roy. Xoc. A 142, 621-628. 
STEWARTSON, K. 85 STUART, J. T. 1971 J .  Fluid Mech. 48, 529-545. 
STUART, J. T. 1958 J .  Fluid Mech. 4, 1-22. 
STUART, J. T. & DIPRIMA, R. 1974 To be submitted for pirblication. 


